Análisis del impacto energético de la biomasa en el sector socio sanitario

Guion

La presentación sigue el siguiente guion:

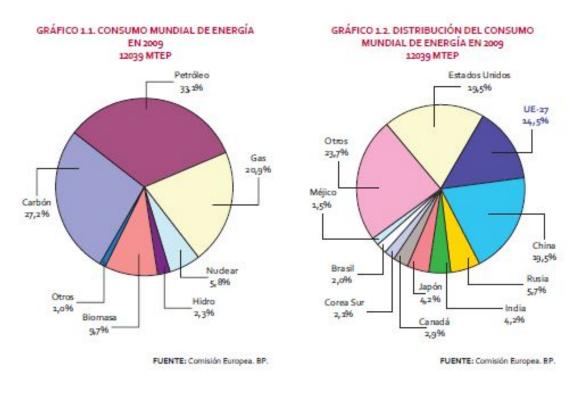
- Introducción
- Definición de biomasa
- Tecnología
- Análisis de ventajas e inconvenientes
- Ejemplos de ahorros obtenidos
- Instrumentos de contratación para la aplicación de la biomasa
- Monrabal, la biomasa y los servicios energéticos

Introducción

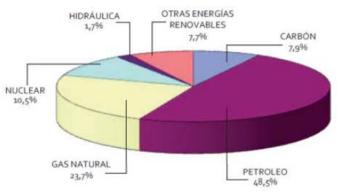
Evolución

- Combustibles fósiles sólidos
- Combustibles fósiles líquidos y gaseosos
- Aumento de la demanda energética
- Situación actual y futura

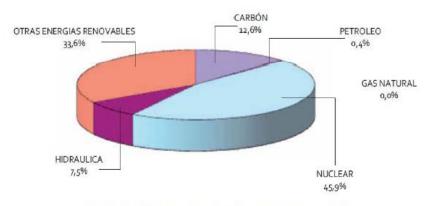
Situación actual y futura


Dar respuesta al aumento de demanda energética sin recurrir a combustibles fósiles, ofreciendo una alternativa al aumento del consumo energético en edificios, directamente relacionado con el aumento de la población Mundial.

La principal consecuencia de una excesiva dependencia de combustible fósiles es el aumento de las emisiones de CO2 asociadas al consumo energético

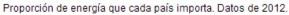

Introducción

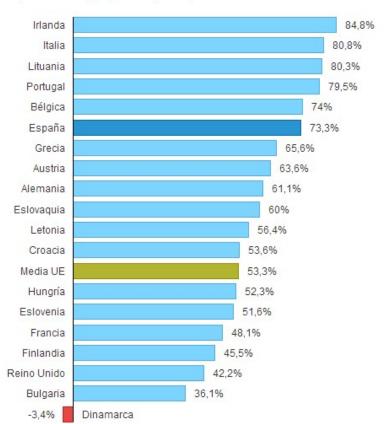
Más del 80% de la energía que consumimos en el mundo procede de combustibles fósiles, con un 27% de consumo de carbón, especialmente dañino para el medio ambiente.



Introducción

Consumo Nacional de Energía Primaria 2009


Producción Nacional de Energía Primaria 2009


El consumo de gas natural y Petróleo supera el 70%, mientras que en el territorio español tan solo se produce un 0,4% de lo consumido.

La situación en España refleja un claro desequilibrio entre la tipología de consumo de energía primaria consumida y la producción nacional de energía.

Introducción

El grado de dependencia exterior en energía en relación al consumo es muy alto en comparativa al resto de países Europeos (27% de autoabastecimiento frente a la media europea de un 47%).

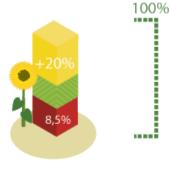
Introducción

Consumos energéticos

- El sector de la edificación consume el 40% de la energía consumida total
- La calefacción y el agua caliente sanitaria suponen un 60% de ese consumo
- Esto quiere decir que el consumo energético susceptible de realizarse con biomasa es el 24% del consumo total
- Los sistemas solares de baja temperatura no presentan disponibilidad completa en los meses de invierno (menor producción) y la temperatura de producción los hace poco viables para los sistemas convencionales de calefacción.

Introducción

Objetivos europeos (20/20/20)


- Reducir en un 20% la emisión de gases con efecto invernadero
- Reducir en un 20% el consumo de energía
- Aumentar hasta el 20% el consumo final de energías renovables

Energy consumption

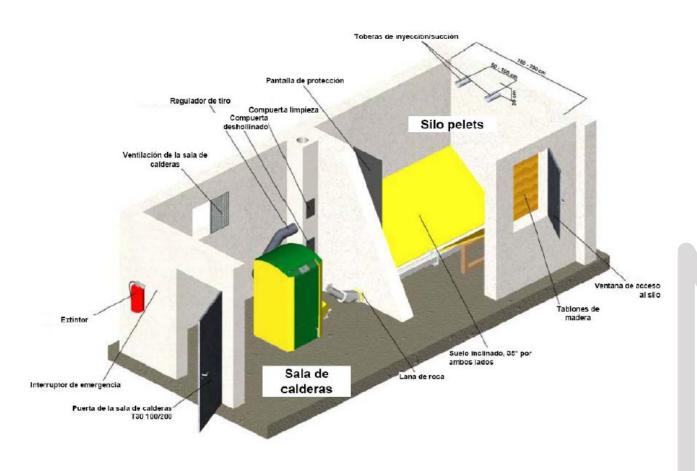
Renewable energy in the energy mix

Definición de biomasa

Definición de biomasa

AENOR

Se define la BIOMASA como todo material de origen biológico excluyendo aquellos que han sido englobados en formaciones geológicas sufriendo un proceso de mineralización.

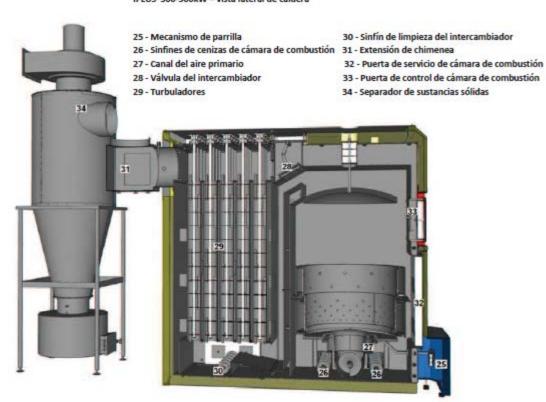

WIKIPEDIA

Se define la BIOMASA como toda materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.



Tecnología

Iplus 300-500kW - vista frontal de la caldera


- 1 Agitador del espacio
- 2 Caja de cambios
- 3 Transportador sinfín
- 4 Sinfin de transportador
- 5 Caja de cambios con motor
- 6 Válvula separadora de protección contra incendio
- 7 Sonda ultrasonido
- 8 Interdepósito
- 9 Destructor del arco
- 10 Sinfin de material
- 11 Equipo de emergencia contra incendios

- 14 Caja distribuidora
- 15 Tapa del distribuidor
- 16 Desembocadura del quemador primario
- 17 Rueda de parrilla
- 18 Corona de combustión adicional
- 19 Cenicero de cámara de combustión
- 20 Cenicero del intercambiador
- 21 Motor de turbuladores
- 22 Deflector de concreto refractario

Tecnología

Quemador

Se genera la combustión, que libera la energía contenida en el combustible empleado

Intercambiador

Los gases
generados en la
combustión a
alta
temperatura
transmiten su
calor al agua
que circula en el
interior de la
caldera

Tras el 등 intercambio 은 los gases son expulsados

Tecnología

Tipos de caldera por disposición de la cámara de combustión

- Atmosféricas
- Estancas

Tipos de caldera por tecnología

- Estándar
- Baja Temperatura
- Condensación

Habitualmente en biomasa las calderas son estándar y de cámara de combustión estanca, si bien en el mercado ya existen calderas de biomasa de condensación. También existen calderas de biomasa de baja temperatura.

Tecnología

Tipos de caldera por material de construcción

- Chapa de acero
- Fundición

Tipos de caldera por sistema de alimentación de combustible (biomasa)

- Alimentador inferior
- Parrilla móvil
- Quemador en cascada

Habitualmente en biomasa las calderas son de fundición.

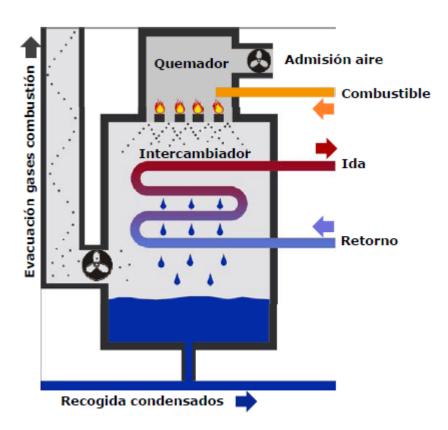
Tecnología

Tipos de caldera por sistema de alimentación de combustible (biomasa)

- Manual
- Extracción mecánica mediante tornillo sin fin
- Extracción neumática aspirada

Tecnología

En las calderas de biomasa estándares se produce condensación por debajo de 50-55 °C. La solución más habitual es emplear una válvula de elevación de temperatura a la salida de la caldera tarada a unos 55 °C. Esto puede evitarse en su empleo en sistemas de calefacción con emisores individuales (radiadores) con diseños de la temperatura de retorno a 60 °C.


Respecto a las calderas de baja temperatura, tradicionalmente han existido dos soluciones:

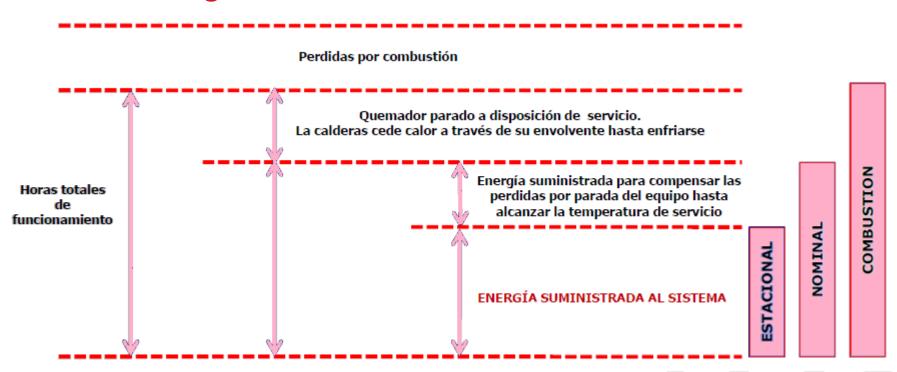
- Superficie de intercambio de pared múltiple
- Piezas de fundición gris especial

Las calderas de biomasa de baja temperatura suelen caracterizarse por ser modulantes, con aislamientos térmicos de gran espesor (150 mm), con intercambiadores de fundición gris, regulación de la entrada de oxígeno en la mezcla del quemador y menor temperatura media de funcionamiento.

Tecnología

En las calderas de biomasa de condensación, las condensaciones ácidas son diferentes a las producidas con gas natural o gasóleo:

Gas natural: ácido carbónico (pH 3-4)


Gasóleo: azufre

• Biomasa: azufre y cloro

Las calderas de condensación emplean generalmente acero inoxidable AISI 316 L, pero en el caso de las calderas de condensación de biomasa se suelen emplear paredes de grafito (fundición especial gris).

Tecnología

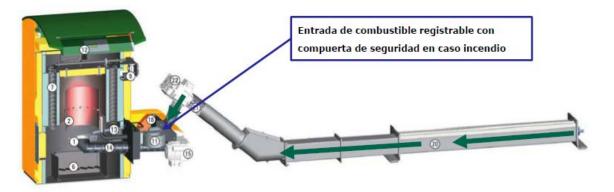
Hay que distinguir entre rendimiento de la combustión, instantáneo o nominal y estacional para poder comparar equipos de forma homogénea.

Caldera	Rendimiento medio estacional (sobre PCI)			
Anteriores a 1990	75%			
Estándar atmosférica a gas	75%			
Estándar estanca a gas	80%			
Estándar estanca a gasóleo	78%			
Baja temperatura atmosférica a gas	93%			
Baja temperatura estanca a gas	95%			
Baja temperatura estanca a gasóleo	93%			
Condensación a gas	106%			
Estándar estanca a biomasa	75%			
Condensación a biomasa	92%			

Calderas de biomasa estándar

Caldera – modelo		PE08	PE(S)12	PE(S)15	PE(S)20	PE(S)25	PE(S)32	PES36	PES48	PES56
Caldera - potencia nominal	kW	8	12	15	20	25	32	36	48	56
Caldera - carga parcial	kW	2,4	3,4	5	6	8	10	11	15	17
Ancho - total B	mm	1013	1130	1130	1130	1186	1186	1297	1297	1297
Ancho – caldera C	mm	645	700	700	700	756	756	862	862	862
Alto - caldera H	mm	1066	1090	1090	1090	1290	1290	1553	1553	1553
Alto – sistema neumático D	mm		1520	1520	1520	1710	1710	1855	1855	1855
Alto – unidad de Ilenado F	mm		430	430	430	420	420	302	302	302
Fondo – caldera T	mm	691	814	814	814	870	870	990	990	990
Fordo - revestimiento quemador V	mm	430	508	508	508	508	508	508	508	508
Masa	mm	630	690	690	690	750	750	790	790	790
Dimensiones tomas ida y retorno	plg.	1"	1"	1"	1'	5/4"	5/4"	2"	2"	2"
Altura conexiones ida y retorno A	mm	896	905	905	905	1110	1110	1320	1320	1320
Diámetro tubo de humos R	mm	130	130	130	130	150	150	180	180	180
Altura conexión tubo de humos E	mm	664	645	645	645	844	844	1040	1040	1040
Peso	kg	210	242	246	250	316	320	602	606	610
Rendimiento carga nominal	Qb	92,2	92,5	92,6	92,4	91,9	91,4	92,3	92,5	93
Rendimiento carga parcial	9/ο	93,4	92,1	91,1	91	91,1	91,2	91	91,1	91,1
Contenido agua	T	39	66	66	66	104	104	135	135	135
Temperatura cámara de combustió	n °C	900-1100	900-1100	900-1100	900-1100	900-1100	900-1100	900-1100	900-1100	900-1100
Presión cámara de combustión	mbar	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01
Tiro requerido potencial nominal/carga parcial	mbar	0,08/0,01	0,08/0,03	0,08/0,03	0,08/0,03	0,08/0,03	0,08/0,03	0,08/0,03	0,08/0,03	0,08/0,03
Temperatura gases de escape potencia nominal	°C	120°-140°	120°-140°	160°	160°	160°	160°	160°	160°	160°
Temperatura gases carga parcial*	°C	80°-100°	80°-100°	100°	100°	100°	100°	100°	100°	100°

Calderas de biomasa condensación


Caldera - modelo		PE(S)K12	PE(S)K15	PE(S)K20	PE(S)K25	PE(S)K32
Caldera - potencia nominal		12	15	20	25	32
Caldera - carga parcial	kW	3,4	5	6	8	10
Ancho - total B	mm	1130	1130	1130	1195	1195
Ancho - caldera C	mm	700	700	700	761	761
Alto - caldera H	mm	1090	1090	1090	1290	1290
Alto - sistema neumático D	mm	1520	1520	1520	1710	1710
Alto - unidad de llenado Γ	mm	430	430	430	420	420
Fondo - caldera T	mm	999	999	999	1060	1060
Fondo - revestimiento quemador V	mm	508	508	508	508	508
Masa	mm	690	690	690	750	750
Dimensiones tomas ida y retorno	plg.	1"	1"	1"	5/4" / 1"	5/4" / 1"
Retorno frio/caliente A/A1	mm	375/762	375/762	375/762	575/962	575/962
Altura conexiones ida y retorno A2	mm	905	905	905	1100	1100
Altura conexión tubo de humos E	mm	275	275	275	471	471
Peso	ka	272	276	280	346	350
Rendimiento carga nominal	96	100	100,6	101,3	102	102,8
Rendimiento carga parcial	96	98	98,2	99,3	100,5	102,3
Contenido agua	- 1	66	66	66	104	104
Temperatura cámara de combustión	°C	900-1100	900-1100	900-1100	900-1100	900-1100
Presión cámara de combustión	mbar	-0,01	-0,01	-0,01	-0,01	-0,01

Potencia	c€/kwh generado
25 kW	12,8-15,7
200 kW	7,4-7,9
500 kW	3,9-6,8
1.000 kW	3,7
2.000 kW	3,6

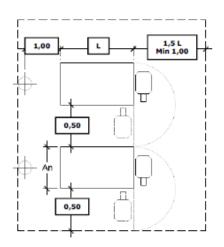
Abastecimiento de combustible

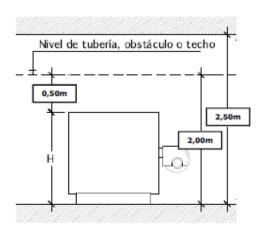
Tolva de almacenaje


Registro de entrada a la caldera

Abastecimiento de combustible

Sistema de limpieza (intercambiador)


Tipología	Precio
25 kW con alimentación mediante tornillo sin fin y sin tecnología de condensación	8.500 €
25 kW con alimentación mediante tornillo sin fin y con tecnología de condensación	10.700 €
25 kW con alimentación neumática y sin tecnología de condensación	9.500 €
25 kW con alimentación neumática y con tecnología de condensación	11.700 €



Tecnología

Una caldera de biomasa no está obligada a cumplir la mencionada fragmentación de potencia, aunque resulta muy conveniente para facilitar el mantenimiento y mejorar el rendimiento del conjunto.

Para potencias de hasta 350 kW basta con prever un espacio entre 15 y 20 m2 para el cuarto de calderas.

Biocombustible

Tecnología

Parámetro	Influye en
PCI material	Potencia del equipo
Contenido en agua W (%)	Rendimiento de combustión
Granulometría (G)	Transporte y suministro al quemador
Densidad aparente kg/m ³	Tamaño del silo
Contenido de cenizas	Mantenimiento
Composición	Emisiones a la atmósfera

El 90% de la producción nacional de pellets está destinada a otros mercados europeos.

El aumento del precio del pellet estaría ligado a que la oferta sea mucho mayor que la demanda así como que los costes de fabricación y transporte aumentasen (precio del gasoil).

Tecnología

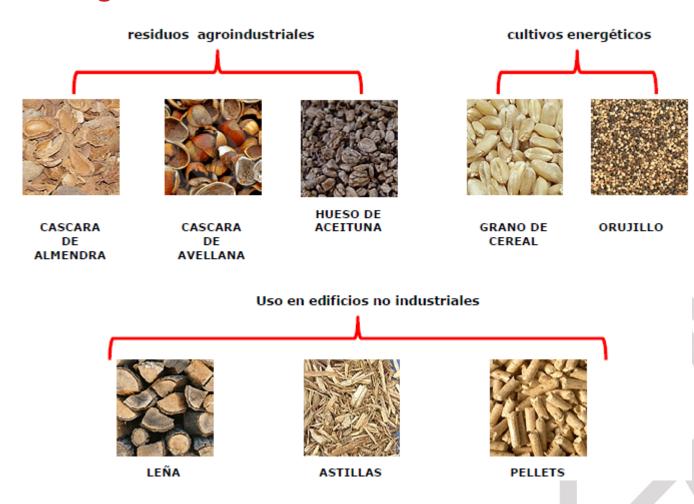
Pellet

El pellet es la biomasa más conocida, tiene forma cilíndrica, y está formado por serrín de madera prensada, que se aglomera de forma natural por la lignina presente en la madera. Esta sustancia es la que le da un aspecto brillante, como si estuviera barnizado.

Hueso de aceituna

El hueso de aceituna es un tipo de biomasa cuyo uso está muy extendido en las zonas donde se cultiva este árbol. Para que su uso no dañe las estufas y calderas de biomasa debe triturarse, lavarse y secarse, ya que de lo contrario su contenido en azufre y cloro corroería el acero rápidamente.

Tecnología

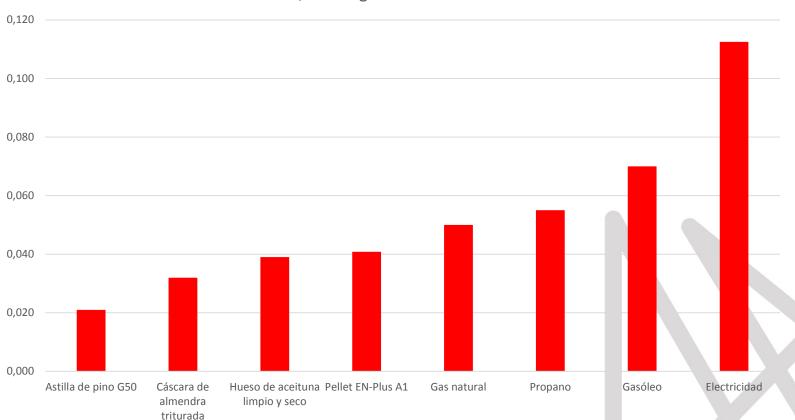

Cáscara de almendra

La cáscara de almendra es un tipo de biomasa cuyo uso está muy extendido en las zonas donde se cultiva este árbol. Sólo se utiliza la parte dura que envuelve el fruto. Se puede usar directamente como sale del partidor o triturada y cribada para mejorar sus características.

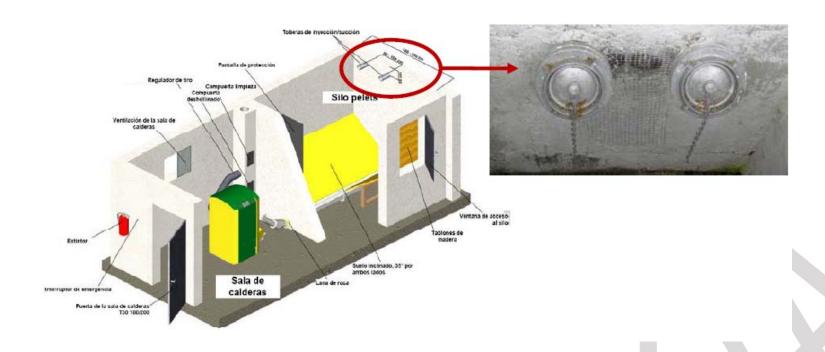
Astilla de pino

La astilla de pino es un tipo de biomasa cuyo uso está especialmente indicado en instalaciones industriales y/o con grandes consumos. En estas instalaciones normalmente existe espacio suficiente para disponer un silo de almacenamiento, que suele ser voluminoso por la baja densidad energética de la astilla. Por contra, es el combustible más competitivo que existe.

	Pellet EN-Plus A1	Hueso de aceituna limpio y seco	Cáscara de almendra triturada	Astilla de pino G50
PCI	4.200 kcal/kg	4.200 kcal/kg	3.700 kcal/kg	3.200 kcal/kg
Humedad	6%	10%	15%	20%-30%
Cenizas	0,6%	0,6%	1,0%	0,4%
Azufre	0,01%	0,02%	0,02%	0,01%
Cloro	0,01%	0,02%	0,02%	0,01 %
Densidad	700 kg/m ³	650 kg/m ³	350 kg/m ³	250 kg/m ³
Suministro sacos				
Suministro big-bags				
Suministro granel				


Tecnología

	Pellet EN-Plus A1	Hueso de aceituna limpio y seco	Cáscara de almendra triturada	Astilla de pino G50
PCI	4.200 kcal/kg	4.200 kcal/kg	3.700 kcal/kg	3.200 kcal/kg
Humedad	6%	10%	15%	20%-30%
Suministro sacos	0,230 €/kg	0,180 €/kg	0,170 €/kg	
Suministro big-bags	0,220 €/kg	0,165 €/kg	0,155 €/kg	
Suministro granel	0,230 €/kg	0,150 €/kg	0,140 €/kg	0,080 €/kg


Hay suministradores que ofrecen contrato de suministro de pellet para 10 años con un precio fijado del pellet y un máximo de subida ligado al precio del gasoil (siempre un 30% menor).

Análisis de ventajas e inconvenientes

Aspectos a mejorar respecto al material de combustión

- Transporte y distribución
- Aumentar el poder calorífico (requiere acumulaciones mayores)
- Disminuir los residuos (cenizas)

Aspectos a mejorar respecto al sistema de almacenaje y carga

- Optimizar el espacio
- Automatizar la carga

Aspectos a mejorar respecto al sistema de producción

- Rendimiento de las calderas
- Coste del conjunto

Análisis de ventajas e inconvenientes

Ventajas en la edificación

- Permite cubrir gran parte de la demanda, reduciendo las emisiones de CO₂ y, por ende, mejorando la clasificación energética
- Contrariamente a lo que se piensa, el precio del combustible es estable y reducido frente a alternativas convencionales de combustibles fósiles
- El impulso Estatal a través de normativas y subvenciones impulsa la implantación de energías renovables como posicionamiento estratégico a futuro, especialmente la biomasa

Ventajas en el campo industrial

- Valoriza subproductos y residuos generados a coste cero
- Reduce la dependencia energética

Análisis de ventajas e inconvenientes

Ventajas en el sector público

- Suelen disponer de espacio suficiente para el almacenaje
- Tienen una demanda elevada y constante de calefacción y/o agua caliente sanitaria
- Incluyen sistemáticamente elementos de acumulación e inercia

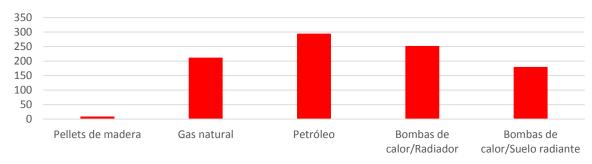
La implantación de biomasa en este tipo de edificios resulta más sencilla y rentable, con amortizaciones de entre 3 y 5 años y vidas útiles de entre 15 y 20 años.

En la actualidad existen calderas con un alto grado de automatización de las tareas de limpieza y mantenimiento.

Análisis de ventajas e inconvenientes

El indicador de la certificación energética no es la eficacia de nuestras instalaciones, sino la emisión de CO_2 a la atmósfera. La etiqueta se obtiene por comparación con el denominado edificio de referencia.

El sistema de calefacción y ACS de referencia en 2006 fue una caldera de rendimiento 0,70 y empleo de Gasóleo, por lo que el empleo de Biomasa mejora claramente la producción de CO₂ y con ello la calificación obtenida.


Análisis de ventajas e inconvenientes

Las revisiones del CTE-HE y sus correspondientes modificaciones de 2013 conllevaron los siguientes cambios:

- Mejora del 30% en la demanda exigible
- Edificios residenciales en clase C o superior
- Edificios públicos en clase B o superior

A partir de 2016 los edificios nuevos serán clase B o superior.

ENERGÍA RESPETUOSA CON EL MEDIO AMBIENTE

Ciclo natural del CO2 y mejor certificación energética del edificio

MAYOR COSTE DE IMPLANTACIÓN

Su implantación en el mercado es menor y por ello los precios de los equipos son menos competitivos (tendencia que va cambiando)

PRECIO DEL BIOCOMBUSTIBLE FRENTE A COMBUSTIBLES FÓSILES

Combustible de bajo precio que permite rentabilizar la instalación rápidamente (2 a 4 años)

PODER CALORÍFICO DEL BIOCOMBUSTIBLE

Mucho menor que el del gas natural o gasóleo, por lo que es necesario más combustible para alcanzar igual temperatura.

Esta circunstancia incide en el **espacio de almacenaje**, ya que no existen redes de distribución.

Por ello la biomasa es muy competitiva frente al gasóleo, pero pierde enteros al compararse con el gas natural.

CALDERAS DE ALTO RENDIMIENTO

las calderas de biomasa suelen presentar rendimientos superiores al 90%, equiparándolas con las los combustibles fósiles habituales

CALDERAS DE ALTA INERCIA TÉRMICA

Dado el combustible que emplean tardan en calentar, por lo que su funcionamiento optimo se produce a demanda constante (calefacción) y no instantánea (ACS) o baja temperatura. Conlleva la necesidad de acumuladores de ACS e inercia que aumentan el precio del sistema,

VALORIZAMOS UN RESIDUO Y FOMENTAMOS EL EMPLEO LOCAL

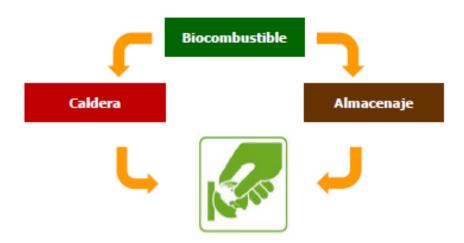
El biocombustible procede del tratamiento de residuos forestales propios o subproductos industriales.

GENERAMOS UN RESIDUOS: CENIZAS

EL volumen de cenizas generadas depende de la calidad del combustible y la combustión.

La generación de cenizas no es un problema de eliminación, sino de mantenimiento contínuo.

Análisis de ventajas e inconvenientes


IMPULSO NORMATIVO

Permite cubrir la demanda obligatoria de ACS con energías renovables, así como aplicarse a espacios abiertos según CTE-DB-HE

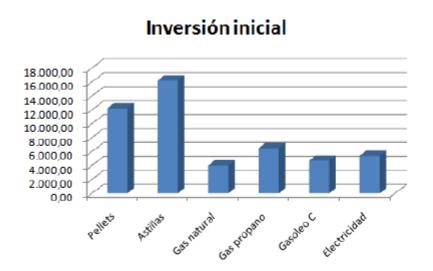
SUBVENCIONES Y CREDITOS DE BAJO INTERES

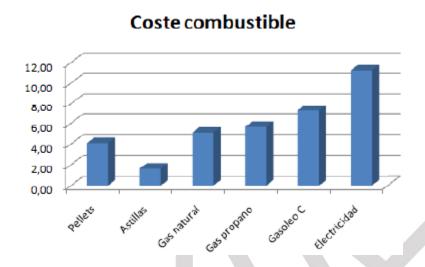
Subvenciones de hasta el 60% y deducciones del 10% de la inversión

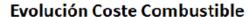
Ejemplos de ahorros obtenidos

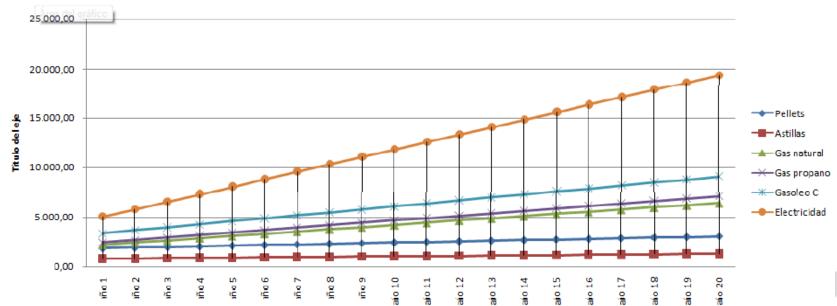
Los costes de inversión inicial dependen del uso final de la energía y siempre serán más altos para usos térmicos domésticos (sobre los 450 €/kW) que para los industriales (en torno a los 100 €/kW), que sin embargo son instalaciones de mucho mayor tamaño.

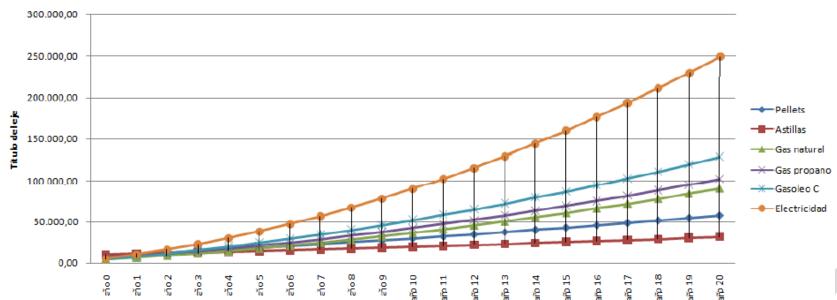
En cuanto al biocombustible, cuanto más elaborado mayor es su precio, sin embargo también es superior su PCI que influye directamente en el espacio de almacenaje.

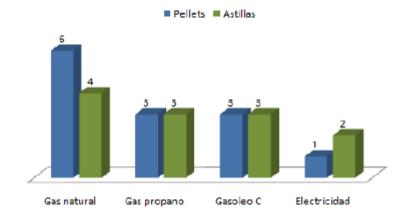

Por ello los pellets son idóneos para el uso en edificio residenciales y públicos, mientras que los residuos agroalimentarios tienen de momento su campo de aplicación en la industria.


En España se cuenta con grandes producciones de hueso de aceitunas o cascaras de avellana perfectamente aplicables al sector edificación.

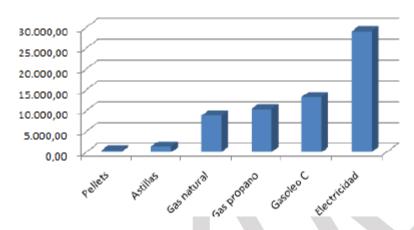

Elemento	Coste aproximado
Caldera biomasa	175-275 €/kW
Depósito inercia	15-20 €/kW
Depósito ACS y elementos auxiliares	50-75 €/kW
Silo y conexiones	170-250 €/kW
Sistema solar	50-65 €/kW
Total	455-685 €/kW







Evolución coste acumulado - Tiempo de Amortización



Años de amortización

Emisiones CO2 anuales (Kg)

Instrumentos de contratación para la aplicación de la biomasa

Instrumentos de contratación

Modalidades de contratación

- Energy Supply Contract (ESC). La ESE suministra al cliente la energía transformada (vapor, agua caliente, frío, alumbrado, fuerza motriz, etc.) en las condiciones pactadas con este. El cliente pagará por tanto sólo por la energía útil consumida al precio fijado en el contrato. Con este tipo de contratos, el cliente delega a la ESE la construcción, operación y mantenimiento de las instalaciones, incluida su financiación. Dentro de este tipo de contrato cabe destacar la modalidad conocida como Chauffage. Esta modalidad cubre el suministro de los servicios mencionados y la compra de electricidad y combustible. De esta forma el cliente recibe una reducción en su factura y la ESE cubre su inversión a través de los ahorros adicionales que consiga. En esta modalidad se suele incluir un término de ahorros compartidos para que el cliente esté más implicado y la duración habitual de contrato está entre 20 y 30 años.
- Build-Own-Operate-Transfer (BOOT). La ESE diseña, construye, financia y opera los equipos instalados durante un plazo determinado. Al finalizar dicho plazo, los equipos revierten al cliente. Normalmente la ESE factura el suministro de energía a los precios pactados. Para proyectos grandes, es habitual constituir una sociedad vehículo (por ejemplo, en plantas de cogeneración).

Instrumentos de contratación

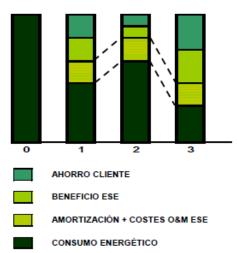
Modalidades de contratación

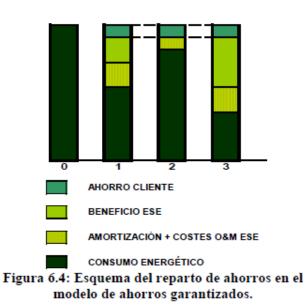
• Energy Performance Contract (EPC). Acuerdo contractual entre la ESE y el cliente para la implantación de medidas de mejora de la eficiencia energética, cuando las inversiones en dichas medidas se recuperan mediante los ahorros esperados por el nivel de mejora de la eficiencia energética y que está recogido y acordado en el contrato. El pago de los servicios prestados se basa (en parte o totalmente) en la obtención de mejoras de la eficiencia energética y en el cumplimiento de los demás requisitos de rendimiento convenidos. La duración habitual de los contratos EPC se encuentra entre 5 y 15 años. La principal diferencia entre el contrato EPC y el contrato ESC reside en que el contrato ESC está centrado en el suministro de energía útil mientras que el contrato EPC tiene como objetivo el ahorro energético en la producción y distribución. Dentro de los contratos EPC existen dos modalidades relacionadas con el reparto de los ahorros obtenidos a partir de las medidas de eficiencia energética, ahorros garantizados y ahorro compartidos.

Instrumentos de contratación

Opciones de financiación de la modalidad de contrato EPC

 Ahorros compartidos. Existe un pago fijo en concepto de la amortización de la inversión, otro por los servicios de operación y mantenimiento y un pago variable en función de los ahorros obtenidos.

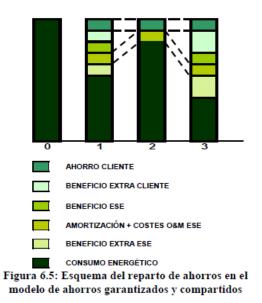



Figura 6.2: Esquema del reparto de ahorros en el modelo de ahorros compartidos.

Instrumentos de contratación

Opciones de financiación de la modalidad de contrato EPC

 Ahorros garantizados. La inversión asociada al proyecto de eficiencia energética es asumida completamente por el cliente y la ESE garantiza un determinado ahorro, normalmente en forma de porcentaje. En el caso de que el ahorro obtenido se encuentre por debajo del garantizado, la ESE debe abonar la diferencia al cliente.



Instrumentos de contratación

Opciones de financiación de la modalidad de contrato EPC

 Ahorros garantizados y compartidos. En este caso existe un pago fijo en concepto de la amortización, un pago por los servicios de operación y mantenimiento y un pago variable dependiendo de los ahorros obtenidos. En relación con el reparto del riesgo, la ESE y el cliente comparten el riesgo de rendimiento, la ESE asume el riesgo de crédito y habitualmente el cliente asume el riesgo del precio de la energía.

Instrumentos de contratación

Modalidades de contratación

• P4. Ese modelo de contrato se define mediante diferentes paquetes de prestaciones relacionadas con los servicios energéticos requeridos por el cliente. En España, el IDAE junto a la Federación Española de Municipios y Provincias (en adelante, FEMP) han difundido un modelo de contrato de servicios energéticos y mantenimiento integral para las instalaciones térmicas y de iluminación interior de los edificios de titularidad pública. A este respecto han definido cinco prestaciones que respetan los procedimientos y la normativa referente a estos contratos con la Administración Pública.

Instrumentos de contratación

Modalidades de contratación

• Leasing. Mediante este tipo de contrato, el cliente o arrendatario efectúa pagos del capital invertido e intereses a la ESE con una frecuencia dependiente del contrato. La ESE o arrendador puede ofertar y llevar a cabo el contrato de alquiler con opción a compra de los equipos mediante una entidad financiera y, si no está asociado a ningún fabricante o suministrador, puede elegir entre las ofertas de diferentes suministradores. Este tipo de contrato se puede clasificar en dos tipos: arrendamiento financiero o de capital y arrendamiento operativo. El arrendamiento financiero consiste en que el propietario es el arrendatario lo que le permite depreciar el equipamiento y obtener beneficios tributarios. El activo de capital y la responsabilidad asociada aparecen reflejado en el balance de cuentas del cliente. Por otro lado, el arrendamiento operativo consiste en que el propietario es el arrendador, el cual lo arrienda al cliente por una cuantía mensual y quedando fuera de su balance de cuentas. Por ello, la ESE cuenta con el riesgo y con los beneficios tributarios del capital.

Monrabal, la biomasa y los servicios energéticos

Monrabal, la biomasa y los servicios energéticos

Leasing. Mediante este tipo de contrato, el cliente o arrendatario efectúa pagos del capital invertido e intereses a la ESE con una frecuencia dependiente del contrato. La ESE o arrendador puede ofertar y llevar a cabo el contrato de alquiler con opción a compra de los equipos mediante una entidad financiera y, si no está asociado a ningún fabricante o suministrador, puede elegir entre las ofertas de diferentes suministradores. Este tipo de contrato se puede clasificar en dos tipos: arrendamiento financiero o de capital y arrendamiento operativo. El arrendamiento financiero consiste en que el propietario es el arrendatario lo que le permite depreciar el equipamiento y obtener beneficios tributarios. El activo de capital y la responsabilidad asociada aparecen reflejado en el balance de cuentas del cliente. Por otro lado, el arrendamiento operativo consiste en que el propietario es el arrendador, el cual lo arrienda al cliente por una cuantía mensual y quedando fuera de su balance de cuentas. Por ello, la ESE cuenta con el riesgo y con los beneficios tributarios del capital.

Monrabal, la biomasa y los servicios energéticos

Monrabal, la biomasa y los servicios energéticos

Acuerdo marco con la Diputación de Valencia, actuaciones en 50 inmuebles en un total de 15 municipios.

2.738.342 kwh ahorro/año

40,18% ahorro

25,32% ahorro medio

911.684 kg CO₂ evitados

Monrabal, la biomasa y los servicios energéticos

OPTIMIZACIÓN ENERGÉTICA DE INMUEBLES

PABELLÓN MUNICIPAL PLÀ DE L'ARC DE LLÍRIA

Se efectuó una instalación de energía solar térmica nueva, con su regulación e instalación correspondiente, con el fin de dar servicio y utilizar de apoyo la actual caldera de gas natural, con depósitos de acumulación de ACS.

206.936 kg CO.

ESPAI JOVE DE LLÍRIA

Para mejorar su eficiencia se procedió a la sustitución de las enfriadoras actuales aire-agua con bomba de calor por modelos actuales más eficientes, así como a la compensación de energía reactiva mediante el empleo de baterías de condensadores.

AYUNTAMIENTO DE SERRA

En este caso se empleó la instalación de una caldera de biomasa para calefacción en sustitución de la instalación actual a base de radiadores eléctricos móviles, junto con sus correspondientes radiadores e instalación de calefacción mediante agua, así como la colocación de termostatos que limiten la temperatura en invierno.

CASA DE LA CULTURA DE MELJANA

Además de las medidas de ahorro más empleadas descritas anteriormente, en esta actuación destacan la desconexión de los termos eléctricos en los aseos para dar servicio a los lavabos y la mejora de la envolvente térmica del edificio, instalando burletes autoadhesivos en las ventanas.

Monrabal, la biomasa y los servicios energéticos

ALUMBRADO PÚBLICO

INSTALACIONES DE ALUMBRADO PÚBLICO, SEMAFÓRICAS Y ELECTRICIDAD DE LOS EDIFICIOS MUNICIPALES DE CARBONERAS

En este caso se optó por sustituir tecnologías como el vapor de mercurio (VM) por hallogenuros metálicos (HM), cambiar los difusores en mal estado e implantar un completo sistema de telegestión. También se incluyen inversiones en los alumbrados de las fiestas, allumbrados ornamentales nuevos en parques y monumentos, así como diversas campañas de concienciación ciudadana y asistencia a las personas mayores en materia energética.

@ 2.988 luminarias

INSTALACIONES DE ALUMBRADO PÚBLICO INCLUIDA RED SEMAFÓRICA DE CALATAYUD

La actuación proyectada induye la renovación total del alumbrado por tecnología led, reposiciones de cableado, la sustitución de las farolas del puente en la avenida Diputación por dos torres de proyectores, la telegestión de las instalaciones, la sustitución de proyectores a led en la Feria de Muestras, polideportivos, instalaciones del frontón, pistas de tenis y pádel y la iluminación con un sistema de RGB de los monumentos de la ciudad.

INSTALACIONES DE ALUMBRADO PÚBLICO Y EDIFICIOS MUNICIPALES DE ESTÍVELLA

El alcance de las inversiones estipuladas para conseguir los ahorros previstos consistió en el cambio de los equipos electromagnéticos a equipos electrónicos con regulación autónoma; la sustitución de las tecnologías existentes, tanto vapor de mercurio (VM) como vapor de sodio de alta presión (VSAP) por halogenuros metálicos con quemador cerámico (HM), así como la telegestión de las instalaciones.

30.692 kg CO.

@ 708 Juminarias

INSTALACIONES DE ALUMBRADO PÚBLICO DE VILLARRUBIA DE SANTIAGO

Nuestra oferta contempla como puntos fuertes el cambio masivo de tecnologías obsoletas y poco eficientes a luminarias de tecnología LED, con un sistema integrado de telegestión y regulación punto

Gracias por vuestra atención

